structure. Both Ba and Sn retain the same coordination polyhedron which they have in their corresponding monosulfides. Ba is in sixfold coordination with $\mathrm{Ba}-\mathrm{S}$ distances ranging from $3.13 \AA$ to $3.21 \AA$ forming a distorted octahedron. The Sn atom is also in a distorted octahedral void, but instead of being in the center of the octahedron it moves very close to one of the triangular faces so as to become bonded to 3 S atoms, $\mathrm{Sn}-\mathrm{S}$ distances of $2 \cdot 52,2 \cdot 58$ and $2.61 \AA$, and is very far from the other 3 S atoms, $\mathrm{Sn}-\mathrm{S}$ distances of 3.59 , 3.68 and $3.79 \AA$. This kind of polar environment is usually expected for ions with s^{2} configuration (Jellinek, 1968) in which one of the $s p^{3}$ hybrid orbitals is occupied by the lone pair and the other three are filled by electrons donated by the sulfur ions. Thus the Sn polyhedron can be described as a tetrahedron with one corner occupied by a lone pair of electrons.

As previously mentioned, the structure can be considered as a distortion of the NaCl structure if one considers both metal sites as equivalent. The cations are ordered in slightly puckered layers parallel to (100) in such a way that Ba layers alternate with Sn layers following the overall architecture of the NaCl structure.

Our observed powder pattern does not match HPH's except in a qualitative manner, Table 4. There is substantial agreement for the six strongest lines, but the line we observe at $2 \cdot 93 \AA$ is not present in HPH's pattern or else it corresponds to the one at $2 \cdot 88 \AA$. For the weaker reflections there is qualitative agreement in
intensity between our pattern and theirs, but the positions of the lines do not agree very well. We thought that a monoclinic polymorph of BaSnS_{2} exists and that HPH had synthesized an orthorhombic one. However, they report the same phase at $800^{\circ} \mathrm{C}$ and at $650^{\circ} \mathrm{C}$ and the existence of a different modification at $750^{\circ} \mathrm{C}$ seems improbable. We repeated HPH's preparation of BaSnS_{2} by heating $\mathrm{BaS}: \mathrm{SnS}$ at $800^{\circ} \mathrm{C}$ for three days and obtained the same powder pattern that we found in the first preparation at $750^{\circ} \mathrm{C}$ which had been heated for two weeks. The possibility that there is, indeed, an orthorhombic polymorph seems remote.

References

Evans, H. T. (1961). Acta Cryst. 14, 689.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Hervieu, M., Perez, G. \& Hagenmuller, P. (1967). Bull. Soc. Chim. Fr. 6, 2189-2194.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Jellinek, F. (1968). Inorganic Sulphur Chemistry, Chap. 19, pp. 669-747. Edited by G. Nickless. Amsterdam, London, New York: Elsevier.
Jumas, J. C., Riebes, M., Philippot, E. \& Maurin, M. (1971). C. R. Acad. Sci. Paris, Sér. C, 272, 1811-1813. Susa, K. \& Steinfink, H. (1971). J. Solid State. Chem. 3, 75-82.
Yamaoka, S. \& Okai, B. (1970). Mater. Res. Bull 5, 789794.

The Crystal Structure of an Anorthoclase: an Intermediate Alkali Feldspar

By R.De Pieri and S. Quareni
Istituto di Mineralogia e Petrologia, Università di Padova, Padova, Italy

(Received 9 February 1973; accepted 12 March 1973)
The results of a structure analysis of an anorthoclase (Or $29 \%, \mathrm{Ab} 65 \%$, An 6%) are reported. By use of three-dimensional difference Fourier and least-squares techniques, parameters have been refined to give $R=7 \cdot 7 \%$. The structure appears to be conpletely disordered with respect to Al and Si distribution. The anisotropy of the electron densities for the Na / K atom is discussed.

Introduction

Potassium feldspars display a number of different crystal structures which have been studied by many authors. We may mention, in this connexion, the determination and refinement of two sanidine structures obtained by heating orthoclase (Cole, Sörum \& Kennard, 1949; Ribbe, 1963), of natural sanidine (Onorato, Penta \& Sgarlata, 1963), of an orthoclase (Jones \& Taylor, 1961; Colville \& Ribbe, 1968), of an adularia (Colville \& Ribbe, 1968), of an intermediate microcline (Bailey \& Taylor, 1955), and of two maximum micro-
clines (Brown \& Bailey, 1964; Finney \& Bailey, 1964). In addition, the high and low albite structures are well known (Ferguson, Traill \& Taylor, 1958; Ribbe, Megaw \& Taylor, 1969). It would appear, therefore, that apart from some as yet unresolved details the end-members of the alkali feldspar series are well determined. On the other hand, absolutely nothing is known about the structures of the intermediate members.

In this paper we wish to report the results of a structure analysis of one of these intermediate members, a natural anorthoclase (Or 29%, Ab 65% An 6\%). The
$\mathrm{Al} / \mathrm{Si}$ distribution in the non-equivalent tetrahedral sites is discussed. It is worth noting that the determination of a natural feldspar structure can give information about its thermal history, a fact that is important in the study of the petrogenesis of the rocks in which it is found. Moreover, the results of structural refinements of alkali feldspars are indispensable in order to establish the correlation between structure and physical property, as for example in the relationships between lattice parameters, optic axial angle, extinction angles and refractive indices.

The present accurate structure analysis has enabled us to interpret the mechanism for the reversible tri-clinic-monoclinic phase transition which in anorthoclase occurs at moderate temperatures (De Pieri \& Quareni, 1972).

Experimental

The anorthoclase sample studied here was obtained from a group of large feldspar crystals found in a camptonitic dyke in Posina (Vicenza, Italy), and has been examined chemically, optically and crystallographically by De Pieri, De Vecchi \& Quareni (1970). Table 1 gives the results of the chemical analysis.

Table 1. Chemical composition of the anorthoclase

SiO_{2}	$65.32 \mathrm{wt} \%$.		(1)		(2)
$\mathrm{Al}_{2} \mathrm{O}_{3}$	21.23	Or	$25.2 \mathrm{~mol} . \%$	Or	$29 \mathrm{~mol} . \%$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	0.23	Ab	67.9	Ab	65
CaO^{2}	1.32	An	6.5	An	6
$\mathrm{Na}_{2} \mathrm{O}$	7.66	Cn	0.4		
$\mathrm{~K}_{2} \mathrm{O}$	4.60				
BaO	0.24				
Total	$100 \cdot 30$				

(1) Bulk composition of the megacrystal by the chemical analysis.
(2) Composition extimated by α^{*} and γ^{*} values.

From the α^{*} and γ^{*} angles (De Pieri, De Vecchi \& Quareni, 1970) it was possible to distinguish slight differences in composition between fragments of the same crystal; in particular, α^{*} and γ^{*} for the present sample indicated that its composition was as given in Table 1.
The sample used was $0.21 \times 0.24 \times 0.46 \mathrm{~mm}$ with its longest dimension along [100] and showed no twinning or unmixing phenomena. The axes of reference chosen here are the conventional ones for feldspars and on this basis the space-group symbol is $C \overline{\mathrm{I}}$.
Table 2 shows the lattice constants measured with a precession camera calibrated with quartz and NaCl using $\mathrm{Cu} K \alpha(\lambda=1.5418)$ radiation. The density was determined by suspension in liquid according to the technique suggested by Straumanis (1953). The refractive indices were obtained by the λ variation mathod and the optic angle was measured on a universal stage.
Equi-inclination Weissenberg photographs of all layers between $0 k l$ and $7 k l$ were taken using multiple-

Table 2. Crystal data

a_{0}	$8.300 \pm 0.005 \AA$		α	$91^{\circ} 18^{\prime} \pm 5^{\prime}$
b_{0}	$12.953 \pm 0.008 \AA$		β	$116^{\circ} 25^{\prime} \pm 5^{\prime}$
c_{0}		$\pm 0.005 \AA$	γ	$90^{\circ} 19^{\prime} \pm 5^{\prime}$
	$F(000)$	532	$n \times$	1.5275
	Z	4	$n \beta$	1.5324
D_{4}^{22}		$2 \cdot 602$	$n \nu$	1.5337
			$2 V \alpha$	56°

Estimated limits of error are given, not standard deviations.
film techniques (Mo $K \alpha$ radiation). The strong and medium intensities were measured with a Flying Spot Microdensitometer (Joyce-Loebl); only spots with optical density less than 1 were considered. The weak reflexions were estimated visually by comparison with an intensity scale made with a reflexion from the same crystal.
The intensities after correction for Lorentz-polarization factors were scaled together using common reflexions on $h k 0$ and $h k 1$ layers, taken with the same crystal and using the same technique.
No absorption corrections were applied since, on surveying the intensities, we felt that errors in measurement were not small enough to justify such correction.
Some very strong reflexions occurring at low angle showed extinction effects and were discarded during the refinement procedure, which was carried out on a total of 1353 independent observed reflexions.

Refinement

Atomic scattering factors for $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Al}^{3+}$ and Si^{4+} were taken from International Tables for X-ray Crystallography (1962). An average scattering factor of $\frac{3}{4} \mathrm{Si}^{4+}$ plus $\frac{1}{4} \mathrm{Al}^{3+}$ was calculated for all atoms in tetrahedral sites on the assumption of complete disorder of Al and Si .

Similarly, average values were estimated for Na, K and Ca according to the composition as estimated from the angles α^{*} and γ^{*}. Using these scattering factors the Forsyth \& Wells (1958) constants were computed. In the case of oxygen (O^{2-}) the constants given by Tokonami (1965) were employed. All calculations were carried out on the TITAN computer of the Mathematical Laboratory, Cambridge (England).

The structure was refined starting with the atomic coordinates for high albite given by Ribbe, Megaw \& Taylor (1969), at first using a difference Fourier program written by J. Matthewman and then using a full-matrix least-squares program, written by the same author. In the least-squares refinement the weighting scheme of Cruickshank (1965) was used and gave a rapid convergence.

The refinement was conducted in two stages: at first the Na and K atoms, which occupy the same sites in the structure, were treated as if they were a single atom with atomic scattering factor weighted according to chemical composition; then individual scattering fac-
tors for the Na and K atoms were assigned according to the relative amounts present.

The atomic coordinates obtained with refinement of isotropic temperature factors ($R=10 \cdot 1 \%$) do not present any significant differences with respect to those obtained with anisotropic thermal parameters ($R=$ 7.7%).

The atomic coordinates, interatomic distances and bond angles taken from the first stage of refinement are given in Tables 3, 4 and 5 respectively.

The root mean square displacements and the directions of the thermal ellipsoid axes, calculated from the anisotropic thermal parameters using a program written by J. K. Brandon (private communication) are given in Table 6.

Table 3. Atomic coordinates, in fractions of the cell edges, and isotropic thermal parameters

	x	y	z	$B\left(\AA^{2}\right)$
Na, K	$0 \cdot 2748$ (1)	$0 \cdot 0020$ (1)	$0 \cdot 1355$ (2)	$2 \cdot 9$
$\mathrm{T}_{1}(0)$	$0 \cdot 0082$ (1)	0.1739 (1)	$0 \cdot 2205$ (1)	0.7
$\mathrm{T}_{1}(m)$	0.0065 (1)	$0 \cdot 8178$ (1)	0.2257 (1)	0.7
$\mathrm{T}_{2}(0)$	$0 \cdot 6942$ (1)	$0 \cdot 1133$ (1)	0.3334 (1)	0.7
$\mathrm{T}_{2}(m)$	$0 \cdot 6929$ (1)	$0 \cdot 8810$ (1)	$0 \cdot 3469$ (1)	0.7
$\mathrm{O}_{4}(1)$	$0 \cdot 0028$ (3)	$0 \cdot 1379$ (1)	0.9934 (3)	1.6
$\mathrm{O}_{4}(2)$	$0 \cdot 6048$ (3)	0.9966 (1)	$0 \cdot 2840$ (3)	$1 \cdot 4$
$\mathrm{O}_{B}(0)$	$0 \cdot 8250$ (3)	$0 \cdot 1253$ (2)	$0 \cdot 2172$ (3)	1.9
$\mathrm{O}_{B}(m)$	0.8229 (3)	0.8567 (2)	$0 \cdot 2340$ (3)	1.9
$\mathrm{O}_{\mathrm{c}}(0)$	0.0226 (3)	$0 \cdot 3004$ (1)	$0 \cdot 2629$ (3)	1.5
$\mathrm{O}_{\mathrm{c}}(m)$	0.0225 (3)	$0 \cdot 6907$ (1)	$0 \cdot 2385$ (3)	$1 \cdot 4$
$\mathrm{O}_{D}(0)$	$0 \cdot 1900$ (3)	$0 \cdot 1195$ (1)	$0 \cdot 3974$ (3)	1.5
$\mathrm{O}_{\mathrm{D}}(m)$	0.1872 (3)	$0 \cdot 8717$ (1)	$0 \cdot 4129$ (3)	1.5

Standard errors $\times 10^{-4}$ are in parentheses.

Table 4. Interatomic distances in \AA

$\mathrm{T}_{1}(0)-\mathrm{O}_{A}(1)$	1.660	$\mathrm{~T}_{2}(0)-\mathrm{O}_{A}(2)$	1.641
$\mathrm{~T}_{1}(0)-\mathrm{O}_{B}(0)$	1.634	$\mathrm{~T}_{2}(0)-\mathrm{O}_{B}(0)$	1.644
$\mathrm{~T}_{1}(0)-\mathrm{O}_{C}(0)$	1.653	$\mathrm{~T}_{2}(0)-\mathrm{O}_{C}(m)$	1.637
$\mathrm{~T}_{1}(0)-\mathrm{O}_{D}(0)$	1.651	$\mathrm{~T}_{2}(0)-\mathrm{O}_{D}(m)$	1.640
Mean	1.649		Mean
$\mathrm{T}_{1}(m)-\mathrm{O}_{A}(1)$	1.650		1.640
$\mathrm{~T}_{1}(m)-\mathrm{O}_{B}(m)$	1.632	$\mathrm{~T}_{2}(m)-\mathrm{O}_{A}(2)$	1.651
$\mathrm{~T}_{1}(m)-\mathrm{O}_{C}(m)$	1.655	$\mathrm{~T}_{2}(m) \mathrm{O}_{B}(m)$	1.637
$\mathrm{~T}_{1}(m)-\mathrm{O}_{D}(m)$	1.641	$\mathrm{~T}_{2}(m)-\mathrm{O}_{C}(0)$	1.630
Mean	1.644	$\mathrm{~T}_{2}(m)-\mathrm{O}_{D}(0)$	1.645
		Mean	1.641

Table 5. Interatomic angles in degrees

$\mathrm{O}_{A}(1)-\mathrm{T}_{1}(0)-\mathrm{O}_{B}(0)$	$105 \cdot 4$	$\mathrm{O}_{A}(2)-\mathrm{T}_{2}(0)-\mathrm{O}_{B}(0)$	$108 \cdot 9$
$\mathrm{O}_{A}(1)-\mathrm{T}_{1}(0)-\mathrm{O}_{C}(0)$	$113 \cdot 8$	$\mathrm{O}_{A}(2)-\mathrm{T}_{2}(0)-\mathrm{O}_{C}(m)$	$104 \cdot 8$
$\mathrm{O}_{A}(1)-\mathrm{T}_{1}(0)-\mathrm{O}_{D}(0)$	$104 \cdot 5$	$\mathrm{O}_{A}(2)-\mathrm{T}_{2}(0)-\mathrm{O}_{D}(m)$	$108 \cdot 3$
$\mathrm{O}_{B}(0)-\mathrm{T}_{1}(0)-\mathrm{O}_{C}(0)$	$111 \cdot 7$	$\mathrm{O}_{B}(0)-\mathrm{T}_{2}(0)-\mathrm{O}_{C}(m)$	$112 \cdot 0$
$\mathrm{O}_{B}(0)-\mathrm{T}_{1}(0)-\mathrm{O}_{D}(0)$	$111 \cdot 6$	$\mathrm{O}_{B}(0)-\mathrm{T}_{2}(0)-\mathrm{O}_{D}(m)$	$110 \cdot 0$
$\mathrm{O}_{C}(0)-\mathrm{T}_{1}(0)-\mathrm{O}_{D}(0)$	$109 \cdot 5$	$\mathrm{O}_{C}(m)-\mathrm{T}_{2}(0)-\mathrm{O}_{D}(m)$	$112 \cdot 6$
$\mathrm{O}_{A}(1)-\mathrm{T}_{1}(m)-\mathrm{O}_{B}(m)$	$105 \cdot 6$	$\mathrm{O}_{A}(2)-\mathrm{T}_{2}(m)-\mathrm{O}_{B}(m)$	$110 \cdot 0$
$\mathrm{O}_{A}(1)-\mathrm{T}_{1}(m)-\mathrm{O}_{C}(m)$	$111 \cdot 1$	$\mathrm{O}_{A}(2)-\mathrm{T}_{2}(m)-\mathrm{O}_{C}(0)$	$105 \cdot 6$
$\mathrm{O}_{A}(1)-\mathrm{T}_{1}(m)-\mathrm{O}_{D}(m)$	$105 \cdot 4$	$\mathrm{O}_{A}(2)-\mathrm{T}_{2}(m)-\mathrm{O}_{D}(0)$	$107 \cdot 6$
$\mathrm{O}_{B}(m)-\mathrm{T}_{1}(m)-\mathrm{O}_{C}(m)$	$111 \cdot 1$	$\mathrm{O}_{B}(m)-\mathrm{T}_{2}(m)-\mathrm{O}_{C}(0)$	$110 \cdot 9$
$\mathrm{O}_{B}(m)-\mathrm{T}_{1}(m)-\mathrm{O}_{D}(m)$	$112 \cdot 2$	$\mathrm{O}_{B}(m)-\mathrm{T}_{2}(m)-\mathrm{O}_{D}(0)$	$110 \cdot 4$
$\mathrm{O}_{C}(m)-\mathrm{T}_{1}(m)-\mathrm{O}_{D}(m)$	$109 \cdot 6$	$\mathrm{O}_{C}(0)-\mathrm{T}_{2}(m)-\mathrm{O}_{D}(0)$	$112 \cdot 1$
Mean tetrahedral			
$\mathrm{T}_{1}(0)-\mathrm{O}_{A}(1)-\mathrm{T}_{1}(m)$	$143 \cdot 3$	$\mathrm{~T}_{1}(0)-\mathrm{O}_{C}(0)-\mathrm{T}_{2}(m)$	$131 \cdot 9$
$\mathrm{~T}_{2}(0)-\mathrm{O}_{A}(2)-\mathrm{T}_{2}(m)$	$132 \cdot 4$	$\mathrm{~T}_{1}(m)-\mathrm{O}_{C}(m)-\mathrm{T}_{2}(0)$	$132 \cdot 8$
$\mathrm{~T}_{1}(0)-\mathrm{O}_{B}(0)-\mathrm{T}_{2}(0)$	$148 \cdot 5$	$\mathrm{~T}_{1}(0)-\mathrm{O}_{D}(0)-\mathrm{T}_{2}(m)$	$138 \cdot 8$
$\mathrm{~T}_{1}(m)-\mathrm{O}_{B}(m)-\mathrm{T}_{2}(m)$	$154 \cdot 9$	$\mathrm{~T}_{1}(m)-\mathrm{O}_{D}(m)-\mathrm{T}_{2}(0)$	$145 \cdot 1$
	mean	$140 \cdot 9^{\circ}$	

Discussion

(a) $\mathrm{Si} / \mathrm{Al}$ distribution

The average dimensions of the tetrahedra and the corresponding Al contents, calculated with the equation of Ribbe \& Gibbs (1969) show that there is no significant difference from a completely disordered $\mathrm{Si} / \mathrm{Al}$ distribution with one quarter of the Al atoms in each of the four tetrahedral positions (Table 7). It is interesting to note that the tetrahedral dimensions in the anorthoclase are practically equal to those in the high albite studied by Ribbe, Megaw \& Taylor (1969), shown for comparison in the Table 7. In both cases tetrahedron $T_{1}(0)$ is slightly larger than the others. In the case of albite, this can be attributed to incomplete disorder in the $\mathrm{Si} / \mathrm{Al}$ distribution obtained by prolonged heating of the original low albite. In anorthoclase, however, it might be due to some partial ordering produced by the rapid natural cooling that the crystal underwent in the matrix from which it was extracted. This phenomenon, in agreement with Ribbe et al. (1969), can also be explained in terms of local and periodic stresses which can give rise through their effects on the tetrahedral framework to a completely disordered structure. We prefer this second hypothesis; in fact, if a mechanism of this kind, rather than partial ordering of Si and Al , is responsible for the large size of the $\mathrm{T}_{1}(0)$ tetra-

Table 4 (cont.)

Table 6. Parameters for the thermal ellipsoids

		(1)		(2)				(1)		(2)	
			a	b	c				a	b	c
	$\int 1$	0.264	114°	135°	45°		1	$0 \cdot 180$	84°	147°	128°
Na, K	2	0.176	57	134	131	$\mathrm{O}_{B}(0)$	2	$0 \cdot 156$	108	61	127
	3	$0 \cdot 124$	43	85	74		3	$0 \cdot 132$	160	105	52
	1	$0 \cdot 116$	68	155	109		1	$0 \cdot 179$	64	152	108
T ${ }_{1}(0)$	2	0.095	54	86	63	$\mathrm{O}_{B}(m)$	2	$0 \cdot 150$	49	78	70
	3	0.065	136	114	34		3	$0 \cdot 137$	127	114	28
	\} 1	$0 \cdot 109$	58	41	85		1	0.153	92	70	147
$\mathrm{T}_{1}(m)$	2	0.095	32	117	128	$\mathrm{O}_{C}(0)$	2	0.133	58	142	120
	3	0.075	92	62	141		3	$0 \cdot 117$	148	120	76
	\} 1	$0 \cdot 112$	24	105	132		1	$0 \cdot 150$	20	100	133
T ${ }_{2}(0)$	2	$0 \cdot 108$	68	75	51	$\mathrm{O}_{\mathrm{C}}(m)$	2	$0 \cdot 133$	96	166	75
	3	0.062	99	158	67		3	0.123	71	80	47
	1	$0 \cdot 113$	13	96	127		1	0.173	22	105	130
$\mathrm{T}_{2}(m)$	2	$0 \cdot 105$	77	67	46	$\mathrm{O}_{\nu}(0)$	2	$0 \cdot 145$	68	46	68
	3	0.065	91	156	67		3	$0 \cdot 110$	91	47	132
	1	$0 \cdot 182$	22	91	95		1	0.187	10	99	120
$\mathrm{O}_{A}(1)$	\{ 2	$0 \cdot 151$	80	150	118	$\mathrm{O}_{\mathrm{D}}(m)$	2	$0 \cdot 142$	96	152	61
	3	$0 \cdot 110$	109	119	28		¢	$0 \cdot 107$	82	64	44
	1	$0 \cdot 195$	17	99	130						
$\mathrm{O}_{4}(2)$	\{ 2	$0 \cdot 124$	73	60	54						
	\{ 3	$0 \cdot 106$	90	149	61						

(1) R.m.s. displacement of the principal axes of the ellipsoids in \AA.
(2) Directions of the principal axes of the ellipsoids relative to the crystallographic axes a, b and c.
hedron, we can explain why, during the ordering process, the Al atoms concentrate in this site since it is already predisposed to accept the larger Al atom.

Table 7. Al-Si distribution in anorthoclase and in high albite

Tetrahedron	Anorthoclase		High albite (Ribbe et al., 1969)	
	Mean T-O		Mean T-O	
	distance	Al content	distance	Al content
$\mathrm{T}_{1}(0)$	1.649	$0 \cdot 29$	1.648	$0 \cdot 29$
$\mathrm{T}_{1}(m)$	1.644	$0 \cdot 26$	1.644	0.26
$\mathrm{T}_{2}(0)$	1.640	0.23	1.639	$0 \cdot 22$
$\mathrm{T}_{2}(m)$	1.641	$0 \cdot 24$	1.643	$0 \cdot 25$
	Total Al	1.02	Total Al	1.01

Al contents are determined in both cases from the equation given by Ribbe \& Gibbs (1969); the same results are obtained using the equation given by Jones (1968).

(b) Anisotropy of Na and K atoms

In both the low and high albite structures the electron density distribution around the Na atom shows a marked anisotropy which makes the atom appear to be noticeably elongated (Ferguson, Traill \& Taylor, 1958; Ribbe, Megaw \& Taylor 1969). In high albite the anisotropy is particularly pronounced and is probably due to a 'space-average' of the different positions of the Na atom within a cavity of varying shape in different unit cells, rather than to a 'time-average' caused by thermal vibration.

The smaller anisotropy found in low albite is almost certainly due instead to a genuine anisotropy in the thermal motion (Quareni \& Taylor, 1969).

The anisotropy of the Na / K atom in our anorthoclase, which as far as the framework of tetrahedra is concerned is practically identical with high albite, is similar to that found in low albite. It would therefore seem logical to suppose that it is due to thermal effects by analogy with the case of low albite.

If, instead, we consider the different anisotropy shown by Na and K in related feldspars, a different conclusion may be reached.

The anisotropy of the K atom gives rise to a slightly squashed ellipsoid of rotation with its minor axis almost along \mathbf{a}^{*}. The anisotropy of Na , however, gives a greatly elongated ellipsoid with its major axis almost parallel to the (100) plane and inclined to [001] by about 45°; its shortest axis is still nearly along \mathbf{a}^{*}.

In the anorthoclase structure the Na / K anisotropy should represent something intermediate between the anisotropies of K and Na in the related feldspars.

In the second stage of refinement we have therefore attributed to the Na and K individual scattering factors according to the relative amounts present. Some cycles of least-squares refinement were used to obtain the position and anisotropic 'thermal' parameters of the Na atom. For this purpose the position of the K atom was fixed using the results from the first stage of refinement, and the anisotropic thermal parameters used were those for K in the adularia of Colville \& Ribbe (1968). At the end of this refinement the anisotropic parameters for Na were found to be close to those in high albite. This result therefore scems to support the hypothesis that the resulting anisotropy for the Na / K in this anorthoclase can be explained in terms of a 'space-average'; potassium, because of its size, must occupy the whole of the cavity in which it is
located, whereas the sodium, with its much smaller size, gives rise to cavities of different shape within which it can occupy different positions in the various unit cells.

The R index decreased by only 0.01% in the second stage and although this small change gave a slight improvement in the difference Fourier maps it was not possible from this to decide whether the anisotropy of the Na / K atom was best explained in terms of a 'spaceaverage' or a 'time-average'.

The model assumed for the second stage of refinement is compatible with the fact that the isotropic temperature factor for $\mathrm{Na} / \mathrm{K}\left(2.9 \AA^{2}\right)$ is intermediate between that obtained in sanidines $\left(2 \cdot 0 \AA^{2}\right.$, Onorato et al., 1963; $2 \cdot 1 \AA^{2}$, Ribbe, 1963) and that in high albite (5.7 \AA^{2}, Ribbe et al., 1969).

Conclusions

The structure analysis of this anorthoclase has shown that there is complete disorder in the $\mathrm{Si} / \mathrm{Al}$ distribution and that the framework of tetrahedra is perfectly analogous to that in high albite. The large anisotropy of the Na / K atom can be interpreted in terms of a 'space-average' of the Na atoms as in high albite with the K atom, because of its larger size, occupying a single position within the cavity in which it is found. The possibility that this anisotropy may represent a true anisotropy in the thermal vibration ('time-average') cannot however be excluded.

We wish to thank Dr W. H. Taylor for the constant encouragement and useful advice which he has given during the development of this work, Dr Helen D. Megaw for her helpful discussions on the manuscript and Dr M. Glazer for the translation of the English text.

We are also grateful to Mr R. Menegazzi for his help in the collection of intensity data, and to Dr J. K. Brandon and Mrs J. C. Matthewman for their as-
sistance in performing the computations. One of us (S.Q.) wishes to thank the Natural Environment Research Council (U.K.) and the Consiglio Nazionale delle Ricerche (Italy, contribution No. 71•00336/06/115 3172) for their generous grant.

References

Bailey, S. W. \& Taylor, W. H. (1955). Acta Cryst. 8, 621-632.
Brown, B. E. \& Bailey, S. W. (1964). Acta Cryst. 17, 1391-1400.
Cole, W. F., Sörum, H. \& Kennard, O. (1949). Acta Cryst. 2, 280-287.
Colville, A. A. \& Ribbe, P. H. (1968). Amer. Min. 53, 25-37.
Cruickshank, D. W. J. (1965). Computing Methods in Crystallography, edited by J. S. Rollett. Oxford: Pergamon Press.
De Pieri, R., De Vecchi, G. \& Quareni, S. (1970). Mem. Acc. Patav. Sci. Lett. Arti, 72, 189-219.
De Pieri, R. \& Quareni, S. (1972). Mem. Ist. Geol. Miner. Univ. Padova, pp. 23.
Ferguson, R. B., Traill, R. J. \& Taylor, W. H. (1958). Acta Cryst. 11, 331-348.
Finney, J. J. \& Bailey, S. W. (1964). Z. Kristallogr. 119, 413-436.
Forsyth, J. B. \& Wells, M. (1959). Acta Cryst. 12, 412415.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Jones, J. B. (1968). Acta Cryst. B24, 355-358.
Jones, J. B. \& Taylor, W. H. (1961). Acta Cryst. 14, 443456.

Onorato, E., Penta, F. \& Sgarlata, F. (1963). Period. Miner. 32, 1-34.
Quareni, S. \& Taylor, W. H. (1971). Acta Cryst. B27, 281-285.
Ribbe, P. H. (1963). Acta Cryst. 16, 426-427.
Ribbe, P. H. \& Gibbs, G. V. (1969). Amer. Min. 54, 85-94.
Ribbe, P. H., Megaw, H. D. \& Taylor, W. H. (1969). Acta Cryst. B25, 1503-1518.
Straumanis, n. E. (1953). Amer. Min. 38, 662-670.
Tokonami, M. (1965). Acta Cryst. 19, 486.

